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The problem of the synthesis and the analysis of random-layer line profiles arises in the evaluation of 
X-ray diagrams of disordered lamellar structures, for example non-graphitic carbons. It is shown that 
the exact solution of the problem (evaluating the spherical average of a rod-like intensity distribution) 
and the circular cylinder approximation can be given in a closed form involving Fourier sine transforms 
and Fourier Bessel transforms respectively. For intensity distributions of the Cauchy type, analytical 
expressions for the exact solution, for the circular cylinder approximation, and for the approximations 
given by Warren and by Wilson are found, which facilitate the evaluation of the range of validity of the 
approximations. Based on the information obtained from this comparison a method for the analysis 
of random-layer line profiles is developed which uses a general Fourier transformation with subsequent 
refinement to compute the Fourier transform of the cross section of the rod-like intensity distribution 
and thus permits the investigation of line profiles from random-layer structures in the same way as line 
profiles form three-dimensional lattices. 

Introduction 

The intensity diffracted by a two-dimensional lattice 
is represented in reciprocal space by a periodic array 
of parallel rod-like intensity distributions. A random 
distribution of two-dimensional lattices poses the pro- 
blem of taking the spherical average over such a distri- 
bution. This problem was first treated by yon Laue 
(1932) for an infinitely thin rod by approximating the 
averaging sphere by tangent planes. The resulting inten- 
sity distribution is given by 

1 
I (s )=  2nsl/(s2 - s~,~ for s > sn 

I(s) = 0 for s < sn (1) 

where I(s) is the intensity as a function of the absolute 
value of the reciprocal space vector (s = 2 sin 0/2) and 
sn the distance of the rod of index h (=  hk) from the 
origin of reciprocal space. The intensity along the rod 
is considered to be unity. 

For a rod of finite diameter, Warren (1941) has 
developed an approximation which is given by 

1 ¢oo 

I ( s ) -  ns~/(2s)1o {In}(s-sn-z2)dz (2) 

when normalized as equation (1). {In}(s) is the nor- 
malized projection of the cross section of the rod on 
to the plane defined by the origin of reciprocal space 
and the axis of the rod. Warren (1941) has evaluated 
the integral for In in the form of a Gaussian distribu- 
tion and has shown that the validity of (2) is restricted 
to values of s in the vicinity of sn. 

Recently, Warren & Bodenstein (1966) have modi- 
fied this approximation to 

I ( s )=  nsV(s+sn ) ( s - sn-z2)dz ,  (3) 

which also holds for sn>)>s, and have evaluated the 
integral taking the exact expression of In for circular 
disks. 

Wilson (1949) has given a more general treatment 
of the problem including the possibility of intensity 
variations along the rod. If the latter can be neglected 
he derived an expression for the line profile given by 

1 ~oo An(r) 
I ( s ) -  2nsl/(2sn) Jo ]/r (cos 2nar + sin 2nar)dr (4) 

when normalized as equation (1), where An is the 
Fourier transform of {In} (which is considered to be 
real and even) and a=(sZ--s:h)/2sn. 

Brindley & M6ring (1951) have considered the pos- 
sibilities of taking the average numerically, using {In} 
curves for various layer shapes. 

The work presented in this paper deals with the 
applicability of Fourier transform methods for the 
synthesis and analysis of random-layer line profiles. 

Exact solution 

Let I(s) be the intensity distribution in reciprocal space 
(s = 2 sin 0/2) for a pair of rods of opposite index, the 
axes of which are located at s=  Sh and s = -  Sh. If the 
intensity distribution in the cross section of a rod is 
In(s12), s12 being a vector normal to the rod axis, the 
normalized intensity distribution is given by 

l(s)=½[In(s12-sn)+ln(-slz+sn)]. (5 )  

The Fourier tansform of l(s) is 

P ( r )=  ivI(s) exp(2nirs)dvs 
= 5(r3)[An(r12) cos 2nsnr12-Bn(r12) sin 2nsnr12] 

where An and Bh are the real and the imaginary parts, 
respectively, of the Fourier transform of In, 5 is the 
Dirac delta distribution, rn  is a vector in a plane in 

A C 2 2 -  1 
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Fourier space which corresponds to the plane of the 
vectors s~z, and r3 is a vector perpendicular to this plane. 

The spherical average of P(r) is given by 

P~°(r) = ~ o 

where ~0 and V are the angles of the spherical coordi- 
nates of r. If one takes ~0 as the angle between r3 and r 
and V as the angle between sn and rm one finds 

1 I~[An(rs2) P,o(r) = ~ cos (2rcsnraz cos V) 

-B~(r12) sin (27rsnr12 cos ~')]dv, (6) 

from which the spherical average of I(s) is obtained by 

2 l°°rp,o(r) sin 2rcrsdr. (7) I A s ) =  s 0 

A particularly simple form is obtained when In is 
radially symmetrical. In this case An is a function of 
the absolute value of r12 only, Bh is zero and equation 
(6) thus becomes 

P¢o(r) = ~ An(r)Jo(2rcsnr) (8) 

where J0 is the Bessel function of the first kind of zero 
order. Consequently, equation (7) gives 

l l:An(r)Jo(2rcsnr) Io,(s) = s sin 2rcrsdr. (9) 

Fig. 1 shows line profiles computed according to 
equation (9) with 

An(r) = -~ arc cos 2R- 2R 

corresponding to the shape function of circular disks 
with radius R. 

Tangent cylinder approximation 

The spherical average of I(s) can be approximated by 
a cylindrical average when the breadth of the intensity 
distribution in the cross section of the rod perpendicu- 
lar to sn is small compared with sn. Let s be given by 

S=SI+S2+S3 

where s~, s2 and s3 are mutually perpendicular and let 
Ss be in the direction of sh, s3 parallel to the axis of 
the rod. The spherical average of I(s) is given by 

l li'~ I~I(s) sin ~od~od ~ . (10) I A s ) =  

Let V be the angle between sl and s~z, the projection 
of s onto the plane defined by sx and s2, and ¢p the 
angle between s3 and s. If the breadth of the distribu- 
tion I(s) in the sz direction is small, equation (10) is 
approximately 

Io,(s) ~- -2--~ co (s) sin ~od~o ds--R 
s1 

since V can be approximated by sa/s2 and a factor 2 
appears since the integration has to be carried out on 
both sides of the sx axis. Interchanging the order of 
integration and taking into account that Ss is approx- 
imately s/sin cp for small values of s2, one finds 

1 {I}2(s,3)dq), IAs) - o 

where {1}2 is the two-dimensional projection of l(s) 
onto the plane defined by Sl and s3 which, following 
equation (5), is given by 

{l}2(Sl3)=½[{In}l(Sx--Sh)+{In}l(--Sl-t-Sh)] , ( l l )  

where {Ih}l is the one-dimensional projection of Ih(s12) 
o n t o  s 1. 

Fourier transformation of equation (11) gives ac- 
cordingly 

P(rl3)= J(r3) . [An(r1) cos 2nShrx-- Bh(rl) sin 2~zshrl] 
and the radial average 

2rcl fi'~p(rx3)dq) = __lzcr [Ah(r) cos 2nsnr_ Bh(r) sin 2rcsnr] 

By inverse transformation one finds 

thus 

l f:[Ah(r Ion(S) "~ ~ ) COS 2~shr 

-- Bn(r) sin 2rcsnr] Jo(2rcsr)dr . (12) 

Comparison of the exact solution 
and the approximations 

Let us assume Ih to be radially symmetrical. The exact 
solution as given by equation (9) can then be expressed 
in the form of a convolution (,) by 

1 [ [{Ih} (s),Re sgn(s) ] I ( s )=  (13) 
l/(s2- j 

2 Rsh = 3 
2RsI~(:!Rs) 

0"075 /f\2 Rsh= 5 

0"050 I \~ 

\x  

0"025 ] 

/ 

0 0 --~f-" 2 4 ' ' i o  2Rs 

Fig. 1. Line profiles computed after equation (9) for circular 
disks of radius R. 
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since 

I ~A n(r) sin 2rcrsdr Jo(2rcshr) 
0 

can be written 

½ n(r)sgn(r)Jo(2rcshr) sin 2zcrsdr 

which yields 

[½1~sgn(r)Jo(2rcshr)sin2rcrsdr] 

sgn(s) 
= {In}(s),Re l/(s2_s~ ) , 

where Re stands for real part and sgn(x) is the sign 
function of x. 

In a similar way one derives from equation (12) 

1 [ 1 ] 
I ( s )=  ~ In(s)*2Re (14) 

V ( s 2 - s ] , )  ' 

in which In(s) and Re(s2-s2) -~ have to be considered 
as two-dimensional distributions of radial symmetry; 
the convolution is thus, in contrast to equation (13), 
a two-dimensional one (*2). 

To express Wilson's equation (4) in the form of a 
convolution, one writes 

l 
oo 
o -I/--r An(r) (cos 27~ar + sin 2ntrr)dr 

=½1 ~_ 1 An(r)[1-isgn(r)]exp(2rciar)dr 
oo Vlr l  

1 (2rciar)dr] , 'sg (r) exp 

which yields 1 
{In} (o'),Re l/~ , 

thus 
1 [1: 

/ ( s )=  2rcsV(2sn) { }(a) ,Re . (15) 

An integral of the type 

I : f ( x -  z2)dz 

which is the basis of Warren's approximation can also 
be expressed in the form of a convolution. Substituting 
y = z  2, this integral becomes 

½ x-y)dy  = ½ x) * Re 1 ," 
0 

equations (2) and (3) are thus given by 

1 [{In} (s),Re 1 ] I(s)-  (16) 
2zrsl/(2s) t l/(s-sh) J 

1 [{In} (s),Re 1 
I ( s )=  2rcs~/(s+sn) L l/(s_sn) ] . (17) 

For large positive values of s-sn or for narrow 
distributions In all equations except (16) tend towards 
equation (1). In this respect the replacement of l/(2s) 
in (16) by l/(s+sn) to give (17) is a substantial im- 
provement of Warren's approximation. 

Inspection of equations (15), (16) and (17) shows 
that the basic mathematical operations involved are 
the same, namely 

1 
f(x) ,Re ]/x ' (18) 

the difference between the methods is entirely due to 
the variables employed. 

Comparing equations (13) and (17) the basis of 
Warren's approximation appears to consist in taking 

1 1 1 
Re l/(s2_ s~) - l/(s + sn) " Re V(s_ sn~ 

and in considering the first factor on the right hand 
side as slowly varying with respect to the second. 

The basis of Wilson's approximation consists, on 
the contrary, in changing the variable of {In} to tr, 
which is permissible when this distribution is relatively 
narrow. 

Under the same condition (narrow width of In) 
equation (14) can be taken as an approximation for 
(13). 

For large negative values of (s-sn), I(s) is deter- 
mined by the outer part of the distribution In. Thus, 
for approximations of the type (18) and an outer part 
of f(x) of the type x -n one finds I proportional to 
]x[ -n+÷ for large negative values of x. For broadening 
due to particle size, n is equal to 2, which leads to the 
[tr]-a/2 curves predicted by Wilson (1949)• 

No simple general approximation can be derived for 
the behaviour of I(s) near the maximum value. It is, 
however, obvious that this part is predominantly deter- 
mined by the inner part of In. 

A quantitative comparison is facilitated by the fact 
that analytical expressions for the exact solution and 
for the approximations can be found for distributions 
{In} of the Cauchy type. 

Let {In} be given by 
L 

{In}(s)-  1 + z~2L2s 2'  

where 1/L is the integral width. One finds 

An(r)=exp(- 2lrl/L) 
and Bn--0. The exact solution obtained from equation 
(9) or (13) gives 

1 ~ / L  1 / ( s )  . 9 )  

A C 2 2 - 1 "  
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where 

F(z)= V 1/(ZZ+zz+l)+Zl (see Fig. 2). 
/ 

The circular cylinder approximation gives after 
equation (12) or (14): 

1 1 / L  nL 1 

Wilson's approximation in the form (4) or (15) gives 

1 ] / /L  [zcL (S 2 __S2) ] (21) I (s)= -~s -~n  F ~ 

Warren's (1941) approximation (2) gives 

1 
$ 

V L F[z:L(s-sn)] (22) I (s )=  ~ --~ 

and Warren & Bodenstein's (1965) 

1 V 2L F[zcL(s- Sh)]. (23) I(s) = -~s zr(s + sn) 

The function F has a maximum at z=  1/I/3=0"577 
and a half-peak width bz=6.777; for large positive 
values it approaches 1/(2/z) and for large negative 
values 1/l/(21z13 ). For sn>> 1/L the peak shift in I(s) thus 
tends towards 

1 0.184 - (24) 
S m a x - - S h - -  roLl~3 L 

and the haft-peak width towards 

bs=2.157/L . 
These relations can be compared with those derived 

by Warren (1941) for Gaussian distributions: 

Smax-sn=O'32/L, bs = 1"84/L; 

and from Warren & Bodenstein (1965) for distributions 
{Ia} due to circular disks: 

Smax-sn=O'30/L , bs= l '91/L. 

In all cases, L has been defined as the integral width 
of {In} which, in the latter relations, leads to some- 
what different constants from those given by Warren 
& Bodenstein since, with this definition, L equals 
16R/3zc for circular disks of radius R. The comparison 
shows that the constant for the peak shift is much 
smaller and for the width somewhat greater for Cauchy 
distributions than for the other two. 

Obviously, the peak shift is more sensitive to particu- 
larities of the profile of {In} than the half-peak width. 
Assuming, to a first approximation, that the peak shift 
is determined only by the inner part of {In} (which is 
considered to be a symmetrical distribution) and ap- 
plying the usual series development 

{In}= ~(An) 

2 Io n(r)#r 
1 + rcZs2L2/k 2 

one obtains from equation (24) 

k 
Smax--Sh-- rcLV 3 , 

where 

and 

k 2 = 

A~(O) l:r2Aa(r)dr 

(25) 

i 
oo 

2 Ah(r)dr 
0 L= Ah(O) 

In Table 1 values of k and L(smax--Sh) are listed for 
line profiles due to various layer shapes calculated from 
the appropriate expressions for Ah(r). 

Table 1. Peak shift parameters for various layer shapes 
Layer shapes 
or type of distribution k L(smax--Sh) 
Square, side on 1/3 0.318 

orSquare'triangleC°rner on, ~'2 g5 0.274 

Circular disk ~ 0-302 

8 l/ 0 0.298 Hexagon, side on -¢- 3 

14 1/35 Hexagon, corner on --~ ~ 0.304 

Gaussian distribution l/n 0.326 

A comparison of the values obtained for circular 
disks and for Gaussian distributions with those given 
by Warren shows that equation (25) represents a fairly 
good approximation. 

Simple expressions for the relationship between haft- 
peak width and the type of the distribution Ih have 
not been found. For constant L, an increase in the peak 

F(z) 
I 

1"5 1 ,I il:i 
IZmA 
I i ,7",,", I /  \ \  

1'0 I [  X~, 

i 2"-'-.. 
J 

0-5 6 t .  Z 10 15 
Fig.2. The function F(z) [equation (19)]. 
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As/As== 
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0"8 

0"7 

0"6 

0"5 

0"4 

~ " ~ Spherical average 

~ n g e n t  cylinder approximation 

% / / '  . . . .  Calc. after Warren (1941) 
/ / /  . . . . . . . . . .  Calc. after Warren & Bodenstein 

/ (1966) 

I I I I I I 1 I I I I 1 " 6 1  V I I I ,  /-Sh 
3 4 6 8 10 20 30 40 0 80 100 

Fig. 3. Relative peak shift as function of Lsn. 

b,/l 

1"0 

0"9 

0"8 

0"7 

0'6 

0"5 

0"4 

bs).~ 

/ /  Calc. after Warren (1941) 

~ . ~ ~ ' ~  ~ /  All other calculations 
J 

I I ! I I I I I I I ~ I I I P I I_  
3 4 6 8 10 20 30 0 60 80 160 Lsh 

Fig. 4. Relative half-width as function of Lsn. 

As/ZXs® 

1"0 

0"9 

0 ' 8 -  

0'7 

0"6 

0'5 

0'4 

s s+¢~-~/(s) s/(s)~f 
//;,c,) 

I I I I I I I I I I I I j v ! v I _  / ~  

3 4 6 8 10 20 30 40 0 80100 "~h 

Fig. 5. Relative peak shift as function of Lsn for I(s), sI(s) and sl/(s+sh) I(s). 
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shift is obviously accompanied by a decrease in the 
half-peak width, the ratio of the former to the latter 
varying from about 0.09 for distribution of the Cauchy 
type to 0.18 for Gaussian distributions. For regular 
layer shapes and narrow size distributions the ratio 
will be around 0.16 + 0.02; wide size distributions will 
produce lower values. The ratio of the peak shift to 
the half-peak width can thus be used for a qualitative 
characterization. 

We have so far considered the characteristics of I(s)  
for values of Lsn large enough for the differences be- 
tween the exact solution and the approximations to 
vanish and for angle-dependent factors to be negli- 
gible. In order to study the limitations of these con- 
ditions the peak shift and the half-peak width were 
evaluated from curves given by equations (19) to (23) 
for a series of Ls~ values ranging from 2 to 100. Figs. 3 
and 4 show plots of the ratio of these parameters as 
functions of Lsh to the limiting values obtained for 
Ls~ tending towards infinity. The results show that 
considerable deviations from the limiting values appear 
with decreasing values of Lsn both for the peak shift 
and the half peak width, whereas the differences be- 
tween the curves for the exact solution and those for 
the approximations are relatively small. In fact, the 
values for the half-peak width are almost identical for 
the exact solution and the approximations except the 
one given by Warren (1941). The differences are more 
pronounced in the case of the peak shift but are still 
relatively small compared with the deviations from the 
limiting value. It is interesting to note that the values 
calculated after Wilson (1949) are nearest to the exact 
values, followed by the values calculated after Warren 
& Bodenstein (1965), which are still nearer to the exact 
values than the values from the circular cylinder ap- 
proximation. This is somewhat surprising since both 
methods were originally considered to be approxima- 
tions of the circular cylinder. 

The deviations from the limiting value can, however, 
be greatly reduced when the peak shift and the half- 

peak width are measured in sl(s)  curves and become 
negligibly small in s l/(s + Sh) I(s)  curves as can be seen 
in Figs. 5 and 6, where the results obtained from plots 
of the exact solution are given. 

Analysis of random-layer line profiles 

It was shown in the preceding sections that all the 
expressions used to calculate random-layer line profiles 
can be given as Fourier transforms. Obviously, the 
inverse transforms should lead to the determination 
of An and Bh, the real and the imaginary part respec- 
tively of the Fourier transform of In, and thus permit 
the analysis of random-layer line profiles in the same 
way as line profiles from three-dimensional lattices. 

The results of the last section indicate that an ap- 
proximation of the type (18) appears to be fairly good 
for most of the Lsn values of practical interest. Let us 
assume a random-layer line profile I(s)  to be given 
experimentally and suitable angle-dependent correc- 
tions already applied. From the half-peak width an 
approximate L value is obtained which permits the 
evaluation of an approximate sh value from Smax. 

Let us define a reduced line profile by 

1 
J(s ' )= {Ih}(s ')*Re Us ' . (26) 

Leaving the normalization of In undefined one obtains 
from equation (17) 

J(s)  = s V(s + sh)l (s) 
and 

S~=S--Sh . 

For large values of s', J(s ')  will approach the function 

1 I~' 3 
l~ s, _ In} (s)ds . (27) 

Let So be the upper limit of the range of values of s 
in which l ( s )  is observable. Neglecting the effect of the 
lower limit the reduced observable line profile is given by 

bs/t 
J 

1"0 

0"9 

0"8 

0"7 

0"6 

0"5 

0"4 

bs)., 
ssfg~/(s) 

f 

I I I I I I I I I 2 1 0  3 ) ~ ~ ~ , i , ,= I s h  
2 3 4 6 8 10 0 40 60 8 0 1 0 0  

Fig.6. Relative half-width as function of Lsn for I(s), sI(s) and sl/(s+sh) l(s). 
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where 

and 

Jobs(S')= [{I}(s'),Re .-1~7-]. Ys, o 

S t o = S O - -  S h  

i 
YS,o=l for s '<so 
Ys'o=0 for s ' > s o .  

(28) 

Assuming So to be in the range of values of s' where 
the approximation (27) is valid, equation (28) can be 
approximated by 

1.o~, 

Ah(r) 

0'8 

1 
Jobs(S')= [{ /h} (S ' ) -  d(S')I~_JIh} (s)ds]* Re i/s---r 

+ Ys,oRe ~ I~_Jlh} (s)ds. (29) 

Let the Fourier transforms of {I~} and Jobs be 

~ {Ih } = Ah(r) + iBh(r) 
and 

~(Jobs) = oAh(r) + ioBh(r) , (30) 
respectively. 

from J(s) 
from {/h} 
exp (- 2 r) 

so=3 

0"6 

0"4 

0"2 

o; 

1,0 ~ 

Ah(r) 

0"8 

0"6 

I t I , I i I ! I 

0"2 0"4 0"6 0"8 1"0 
Fig. 7. Line profile analysis of I(s) as given by (34). 

from J(s) 
from {/h} 

(arc cos r-r  l~-r 2) 

So= 3 

I .  r 
1"2 

0'4 

0'2 

I t I I I B I I 

0'2 0"4 0"6 0"8 1"0 
Fig. 8. Line profile analysis of I(s) as given by (35). 
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Fourier transformation of equation (29) gives 

1 [½{An(r)+iBn(r)-An(O)} ( l+isgn(r))   (Jobs) = 

+ Ah(O){C(2rc[r]s'o)+ i sgn(r)S(Z~r]rls;)}] (31) 

where C(x) and S(x) are the Fresnel integrals in the 
form x e-U 

C(x)- iS(x)= Io ]/--(2~t----) dr" 

Combining equations (30) and (31) and considering 
that the approximation (27) implies 

oA h(O) = 2 V(so)A n(O) , 

one obtains the solutions 

An(r)= l/r{oAn(r) + oBn(r)} 

oAn(0) {1-C(2rcrso)-S(2rcrso)} (32) 
+ 2 1 / ( s  

and 

Bh(r)= Vr{oBh(r)--oAh(r)} 

0An(0) {C(2rcrs'o)-S(Zrcrs'o)} (33) 
+ 2-V( ;T for r>0 .  

The following test functions have been chosen to 
check the validity of the method (s' is replaced by s 
for simplicity). J ( s )=  V(rc/2)F(=s) (34) 

corresponding to 
1 

{&} - 1 +  2s= ' 

Ah=exp(-- 2lr[), Bh=O 

[for F(z) see equation (19)]. 
J(s) calculated from I,o(s) as given by equation (9) 

for sn = 3 and for circular disks of diameter unity, cor- 
responding to 

1"0 

Ah(r) 

0"8 
from J(s) 
from {/h} 

exp ( -  2 r) 

0"6 
So= 6 

0"4 

0"2 

0 / I I , I I I I I I I I I ~ r 
0 0"2 0"4 0"6 0'8 1"0 1"2 

Fig. 9. Line profile analysis of l(s) as given by (36), real part. 

Bh(r) 
from J(s) 

- - - - - -  from {Ih}, and 2r  exp ( -2 r )  

0 ' 4 -  So= 6 

0"2 ///" 

0 I i I . 
0 0"2 0"4 0"6 0"8 1"0 1"2 

Fig. 10. Line profile analysis of I(s) as given by (36), imaginary part. 
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An= " [ a r c  cos r-r1/(1-r2)]  
7~ 

Ba = 0 .  (35) 

J ( s )=  F(rcs) 1 2l/(1 + ~2S2) + 1 -lt-~2S --~- 

corresponding to 
{ l+Trs ~ ~ 

{Ih}= ~ i - ~ - I  ' 

A h = e x p ( -  21rl) 

Bh = 2r exp(-- 21rl) 

[for F(z) see equation (19)]. 
Values of Ah and Bh were calculated from J(s), using 

equations (32) and (33) for various upper limits So (the 
lower limits were taken as -So for simplicity) and com- 
pared with A~ and Bh calculated from {I}h with the 
same truncation, and with the theoretical values. It was 
found that the optimum value of So depends on the 
rate at which J(s) is approaching 1/l/s, as could be 
expected. For the first two test functions (Figs.7 and 

8), calculations with So = 3 give already a reasonably 
good agreement, which means that for such types of 
distribution a truncation at So ~ _ 1.5bs is admissible. 
For the last test function (Figs.9 and 10) a somewhat 
higher limit (So = 6) had to be used, but since this func- 
tion is rather unlikely to occur in practice [it has been 
chosen only to demonstrate the applicability of equa- 
tion (33)] this can be regarded as a limiting case. One 
can thus expect that, in most of the cases, So values 
between l'5bs and 3bs will be admissible. 

The author is indebted to Dr H.Tompa for stimu- 
lating discussions during the course of this work, and 
to Mr J. P. Pauwels for technical assistance. 
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The rigid-body analysis of the thermal vibrations in seventeen molecular structures has been performed. 
Parameters are proposed for judging the validity of the rigid-body model by means of an atom-by-atom 
comparison. It is concluded that the model has a wider range of applicability than might be expected. 

Introduction 

Since Cruickshank (1956a) first introduced the idea, 
it has become fairly common practice at the end of a 
molecular crystal structure determination to analyse 
the anisotropic temperature parameters on the assump- 
tion that the molecule is rigid. Often the purpose is 
no more than the correction of bond lengths (Cruick- 
shank, 1956b), and only occasionally has the assump- 
tion of rigidity been critically examined. As part of a 
larger programme of work, it was decided in this la- 
boratory to undertake a survey of suitable molecular 
structures in order to determine, if possible, the range 
of validity of the rigid-body approximation. Chosen 
for analysis were published structures that had been 
refined to an R index of 0.1 or better, and that not 
only stated unambiguously the form of their tem- 
perature factors but also quoted estimated errors for 
all temperature parameters. It is surprising, but re- 

grettably true, that published structures can be found 
from which it is impossible to determine unequivocally 
what particular form of temperature factor has been 
used. No structure containing atoms heavier than 
oxygen was considered, since it was felt that wide dis- 
parities in atomic masses might prejudice the validity 
of  the approximation. 

Procedure 

A program (JMTFAC) was written for the IBM 1620 
computer to perform the rigid-body analysis. All pub- 
lished temperature factors were first written in the 
standard form 

exp[ -  (bHh 2 + b22k 2 + b3312 -t- bz3kl + b31lh q- blzhk)] , 

and were then transformed to Ui~ referred to ortho- 
gonal crystal axes defined by the unit vectors b × ~.*, 
b, ~.*. The transformation equations are" 


